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Abstract—This paper focuses on the statistical anal-
ysis and modeling of the radar cross-section (RCS) of a
DJI Phantom IV drone. The RCS datasets are generated
by means of simulations performed at 9.41 GHz for
distinct azimuth and elevation angles. Further, these
datasets are tted to usual probability distributions us-
ing three criteria, namely log-likelihood (LLK), Akaike
information criterion (AIC), and Bayesian information
criterion (BIC). Moreover, the impacts of RCS modeling
on the radar detection range is analyzed. Based on
numerical results, the Exponential distribution is shown
to be the best t for the RCS datasets. A good agreement
is obtained between the Exponential’s probability distri-
bution function and the histogram of datasets. Finally,
the use of this distribution for modeling RCS datasets
achieves a maximum error of 3.8% when applied to the
radar range equation.

Keywords—radar cross-section, statistic, drone, like-
lihood, Akaike, Bayesian.

I. Introduction

Nowadays, a considerable increase in the quantity
and popularity of Remotely Piloted Aircrafts (RPAs) is
being observed worldwide. On one hand, they can be
used in a vast variety of useful applications, such as
entertainment, commerce, and even in healthcare [1].
On the other hand, these kinds of drones can also
be aimed at negative goals including terrorism and
espionage, thus, affecting security and privacy [2]. It
is necessary to come out with ways of countering the
aforementioned threats caused by the widespread of
RPAs.

In this regard, numerous works are focusing on radar
detection of RPAs due to its advantages in relation
to other methods of detection. One may highlight the
efciency in adverse weather conditions (i.e., fog, rain,
or snow) and easily deploy on different platforms on
land, sea, or air [3]. A radar system is responsible for
emitting electromagnetic waves, and, then, analyzing
echoes that reect on the targets. Moreover, by analyz-
ing some aspects of the echoes such as time of arrival,

amplitude, and frequency shift, the radar system can
estimate the distance, size, speed, and even the shape
of the detected targets [4].

Radar Cross-Section (RCS) is a crucial parameter
for radar detection, as it measures the reectivity of
targets and plays a pivotal role in determining the
detectability of them by radar systems. It depends on
factors, such as the size, shape, and composition of
the target as well as the frequency of the incident
electromagnetic wave [5]. Basically, targets with high
RCS are more reective and easier for radar systems
to detect, while targets with low RCS are less reective
and harder to detect. Moreover, targets with a complex
structure and geometry have a unique RCS signature
that can be used for target identication [3].

For example, [6] investigated the inuence of a small
xed-wing RPA’s RCS on the detection range of an anti-
drone system. Simulations of the drone’s monostatic
RCS were performed using real parameters of two
radars, with operating frequencies of 870 − 965 GHz
and 3 − 16 GHz. They found out that the RPA’s mean
RCS were −1762 dBsm and −2277 dBsm each, achiev-
ing a detection range of 1784 m. In [7], the authors
measured and analyzed the monostatic RCS of nine
different types of drones in an anechoic chamber, with
frequencies varying from 26 GHz to 40 GHz. They
showed that drones made of carbon ber are easier to
detect than the ones made from plastic and styrofoam.
In [8], a drone classication was proposed by means of
the monostatic RCS dataset provided by [7]. The clas-
sication through the drone’s RCS signature was made
by a new deep-learning technique, the so-called LSTM-
ALRO. Accordingly, it was possible to achieve 9988% of
detection accuracy when compared with the existing
drone classication model. Finally, [9] analyzed the
RCS statistical properties of nine different commercial
drones. To perform such analysis, they measured their
monostatic RCS in an anechoic chamber at 9 GHz.
According to them, the RCS behavior of investigated979-8-3503-4357-1/23/$31.00 ©2023 IEEE
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drones is rather in agreement with a random variable
than a single constant number.

In general, previous works investigated the empirical
values of RCS by solely measuring and analyzing them
in deterministic terms. To the best of the authors’
knowledge, the statistical analysis and modeling of
RPAs’ RCS have not been thoroughly explored in the
literature. Thus, this work proposes a statistical ap-
proach for modeling the RCS of a commercial drone,
DJI Phantom IV, employing a probability distribution
that provides the best agreement with the histogram
of a simulated RCS dataset. The RCS dataset was gen-
erated by simulations performed with Feko® software.
The angles of azimuth and elevation of the incident
wave were varied from 0◦ to 360◦ and from -90◦ to
90◦, respectively. Finally, but not least, comparative
analyses between the chosen probability distribution
and the RCS dataset are provided, in addition to an
evaluation of the radar detection range.

The remainder of this work is organized as follows:
Section II introduces the mathematical formulation of
RCS, criteria for selecting the probability distribution,
and radar range. Section III presents the methodology
to carry out statistical analysis and modeling. Sec-
tion IV discusses numerical results, while Section V
presents nal remarks.

II. Mathematical Formulation

First, this section introduces the mathematical for-
mulation of RCS and its dening characteristics. Then,
it formulates the criteria used for statistical analysis
of a RCS dataset. Lastly, it presents the radar range
equation and its parameters.

A. Radar Cross-Section

The Institute of Electrical and Electronics Engineers
(IEEE) denes RCS as a measure of power scattered in
a given spatial direction when a target is illuminated
by an electromagnetic plane wave [10]. The plane
wave assumption is made when the distance between
the radar and the target is fairly large. The region
comprehended above this distance is called the far
eld, and it will be assumed for the RCS mathematical
formulation. Thus, the RCS of the target is expressed
as

σ = lim
R→∞

4πR2 Es2
Ei2

, (1)

in which Es (Vm) and Ei (Vm) are the far-eld
scattered and incident electric eld intensities, respec-
tively, at a distance R (m).

The mechanism of scattering depends on body size
(L) relative to the wavelength (λ) of the incident wave.
There are three scattering regions: Rayleigh, Resonant,

and Optics. The Rayleigh region is dened for L ≪ λ,
where the scattering is induced by dipole moments,
i.e., the incident electromagnetic wave interacts with
the target and induces an electric current on its sur-
face. The induced current then radiates a secondary
electromagnetic wave, the scattered one. The resonant
region occurs when L ≈ λ, in which surface wave
effects such as edge, traveling, and creeping waves
along with optical effects are relevant. Finally, the
Optics region is established when L ≫ λ, resulting in
insignicant surface wave effects whereas only optical
effects take place [4]. In practical terms, these regions
are limited by L < λ (Rayleigh), λ < L < 10λ (Reso-
nant) and L > 10λ (Optics). Figure 1 shows a sphere’s
RCS in these three regions, in which σ is normalized
regarding the projected area of the sphere (i.e., the
area of a circle, πa2) and the sphere circumference is
normalized by the wavelength (λ).

Figure 1: Normalized sphere’s RCS in Rayleigh,
Resonance, and Optics regions [11].

Unlike geometric targets such as spheres and corner
reectors, which have a deterministic value for the
RCS, the RCS of real and complex targets may not be
effectively modeled as a single constant [11]. For these
targets, the RCS strongly varies with both azimuth
and elevation angles, frequency, and polarization of
the radar transmitter and receiver parts. As a conse-
quence, the RCS must be estimated by tting an RCS
dataset’s histogram to distinct probability distributions
[3]. This statistical analysis leads to statistical models,
which can be of utmost importance for precisely inves-
tigating the RCS impact on radar detection.

B. Statistical Analysis and Modeling

In this study, three statistical criteria will be used to
perform probability distributions selection: Maximum
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Likelihood Estimation (MLE), Akaike Information Cri-
terion (AIC), and Bayesian Information Criterion (BIC).

MLE is a method of estimating the parameters (θ)
of an assumed probability distribution, given some
observed data (X). This is achieved by maximizing a
likelihood function so that, under the assumed proba-
bility distribution, the observed data is most probable.
In other words, the parameters of each probability
distribution are varied, and the one with the maximum
likelihood score, in relation to the histogram generated
with the samples of the simulated RCS, is selected
[12]. Dening Srv = pd0, pd1,    , pdm−1 as the set
of probability distributions, the likelihood of param-
eters θ = θ0, θ1, θ2,    , θk−1 of the j-th probability
distribution in Srv, considering an independent and
identically distributed random sample data set X =

x0, x1, x2,    , xn−1, is given by

Lj(θ) =

n−1

i=0

f(θxi), (2)

∀j ∈ 0, 1,    ,m− 1, where f(θxi) is the likelihood of
parameters θ for a single outcome xi ∈ X.

In practice, it is often convenient to work with the
natural logarithm of the likelihood function, called the
log-likelihood (LLK), which can be expressed as

LLKj(θ) = ln Lj(θ) =

n

i=1

ln f(θxi) (3)

Since the logarithm is a monotonic function, the maxi-
mum of LLKj(θ) occurs at the same value of θ as does
the maximum of Lj(θ). Once LLKj(θ) is maximized, the
parameters of the j-th probability distribution can be
obtained through

θ̂LLKj
= argmax

θ
LLKj(θ) (4)

MLE is a usual criterion to estimate the best proba-
bility distribution which ts the dataset. However, it
does not consider the effect of overtting the dataset.
The t of any model can be improved by increasing
the number of parameters, but there is a trade-off in
the increasing variance [12]. Overtting can be taken
into account by penalizing the complexity of the given
probability distribution. AIC and BIC criteria take this
in consideration for the j-th probability distribution in
Srv, respectively, through

AICj(θ) = −2LLKj(θ) + 2k (5)

and
BICj(θ) = −2LLKj(θ) + k lnn, (6)

∀j ∈ 0, 1,    ,m − 1, in which k is the number of
parameters of the j-th probability distribution and n is
the number of samples of the dataset. As it can be seen,

for AIC and BIC, the penalty terms are 2k and k lnn,
respectively. This means that AIC puts larger penalty
on probability distribution functions with higher num-
ber of parameters, while BIC additionally penalizes the
ones regarding the number of samples contained in
the dataset. In general, the best probability distribution
model is the one with either the lowest AIC or BIC score
[3]. Thus, the j-th probability distribution parameters
can be obtained by minimizing AIC and BIC scores,
respectively, as

θ̂AICj
= argmin

θ
AICj(θ) (7)

and
θ̂BICj

= argmin
θ

BICj(θ) (8)

Since the actual score of the LLK, AIC and BIC
criteria depend on the dataset sample values, it is often
convenient to work with their normalized versions. This
is achieved by means of

LLKj(θ̂LLKj
) =

LLKj(θ̂LLKj
)

max
j

LLKj(θ̂LLKj
)
, (9)

AICj(θ̂AICj
) =

AICj(θ̂AICj
)

max
j

AICj(θ̂AICj
)
, (10)

and

BICj(θ̂BICj
) =

BICj(θ̂BICj
)

max
j

BICj(θ̂BICj
)
, (11)

respectively. In the manner that it is obtained
LLKj(θ̂LLKj

) ∈ [0, 1],AICj(θ̂AICj
) ∈ [−1, 0], and

BICj(θ̂BICj
) ∈ [−1, 0]. For simplicity, (9), (10), (11) will

be denoted, respectively, by LLKj , AICj , and BICj from
now on. In this manner, the best probability distribu-
tion, for each criterion and for each αi, is the one
with the best score, i.e., LLKj = 1 or AICj = −1 or
BICj = −1.

C. Radar Range Equation

According to [4], the maximum detection range
achieved by a radar system is given by

R4
max =

PtG
2λ2σ

(4π)3NFkT0BLsLfSNR
, (12)

in which Pt is the peak transmit power (W ), G are the
transmitter and receiver antenna gain, λ is the wave-
length (m) of the electromagnetic wave, σ is the RCS
of the target (m2), NF is the receiver noise gure of
the radar, k is the Boltzmann constant (1, 3810−23 J/K),
T0 is the temperature (K), B is the receiver bandwidth
(Hz), Ls is the system loss, Lf is the target uctuation
loss, and SNR is the signal-to-noise ratio minimum
necessary to detect a target with an RCS equal σ. Note
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that, except for Lf and σ, all other parameters depend
uniquely on the radar design characteristics.

III. Methodology

The quadrotor investigated in this work is the DJI
Phantom IV, shown in Figure 2. This drone has a
body size (L) of approximately 35 cm diagonally, and it
weighs around 138 kg. It basically consists of a main
body, four propellers, and a high-resolution camera.
Most of its structure is built of plastic.

Figure 2: DJI Phantom IV drone.

To create the RCS’s dataset, it was used Feko® soft-
ware from Altair® company. To do so, the simulations
were performed by assuming a horizontally polarized
plane wave at 941 GHz (i.e., λ = 00319 m). Moreover,
the plane wave incidence occurred in the far-eld
region on the three-dimensional model of the drone, as
illustrated in Figure 3. The assumed azimuth and eleva-
tion angles of the incident wave are, respectively, ϕ =

ϕ0,ϕ1,    ,ϕNa−1 and α = α0,α1,    ,αNe−1, where
Na and Ne represents the size of ϕ and α, respectively.
The RCS dataset is given by σ = σ0,σ1,    ,σNa−1, in
which each element of it corresponds to the simulated
RCS value of a single azimuth angle for a xed ele-
vation angle (i.e., an α element). The method used to
simulate the samples of the drone’s RCS was Physical
Optics because L > 10λ characterizes the Optics scat-
tering region.

Figure 3: RCS simulation of DJI Phantom IV in Feko®.

The set of probability distributions, Srv =

Exponential, Gamma, Generalized Extreme Value,
Generalized Pareto, Rician, Log-normal, Nakagami,
Rayleigh, Weibull, were chosen to model random
variables belonging to R+ and that are commonly used
in the telecommunications eld. In this regard, the
statistical modeling is realized as follows:

• Step 1: Select αi, dening a unique RCS dataset
σ for modeling with a xed elevation angle.

• Step 2: For each Srv element, calculate LLKj ,
AICj , and BICj scores by means of (9), (10) and
(11), respectively.

• Step 3: Evaluate the number of occurrences of i)
LLKj = 1, ii) AICj = −1, and iii) BICj = −1. These
are denoted NLLKj

, NAICj
, and NBICj

, respectively,
for the j-th probability distribution. They are in-
cremented for each αi.

• Step 4: Return to Step 1 for another not previously
selected αi, until there is unused i ∈ 0, 1,    , Ne−
1. This step occurs Ne times.

• Step 5: Calculate the relative frequencies RLLKj
=

NLLKj
Ne, RAICj

= NAICj
Ne, and RBICj

= NBICj
Ne.

• Step 6: Evaluate the average relative frequencies
Ravgj = (RLLKj

+RAICj
+RBICj

)3.
• Step 7: The chosen probability distribution to

model the datasets for every element of α is the
one with the highest Ravgj , ∀j ∈ 0, 1,    ,m − 1
associated with the set Srv.

IV. Numerical Results

The RCS simulation assumed ϕ = 0◦, 2◦,    , 360◦
and α = −90◦,−85◦,    , 90◦. In order to analyze
the impacts of RCS modeling in (12), specications of
a usual maritime radar were considered. The radar
model is FAR-2117 from Furuno® company and its
specications are horizontal-polarized antenna with
G = 315 dB, operational frequency f = 941 GHz,
Pt = 12 kW, B = 60 MHz, NF = 6 dB, and Ls = 6 dB
[13].

Table I shows the normalized scores that each prob-
ability distribution achieved, for α varying in steps of
10◦ for better presentation. The colored cells repre-
sent the best probability distribution for each crite-
rion, being the yellow ones for LLKj , green ones for
AICj and blue ones for BICj . For Table I and Fig-
ure 4, the probability distributions are numbered as fol-
lows: 1-Exponential, 2-Gamma, 3-Generalized Extreme
Value, 4-Generalized Pareto, 5-Rician, 6-Log-normal, 7-
Nakagami, 8-Rayleigh and 9-Weibull.

Note that, for LLK, the best tting is the Generalized
Pareto probability distribution. However, when intro-
duced the penalizing factor for the number of param-
eters in AIC and BIC, the Generalized Pareto function
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Table I: LLKj , AICj and BICj scores for each probability distribution at some elevation angles.

Elevation Angle (α)
-90° -80° -70° -60° -50° -40° -30° -20° -10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

P
ro

b
a
b
il
it
y

D
is
tr
ib

u
ti
o
n
s

1
LLK1 -0.244 0.921 0.999 0.967 0.990 0.983 0.965 0.982 0.999 0.998 0.999 0.999 0.991 0.982 0.997 0.994 0.994 0.989 -0.595
AIC1 0.246 -0.931 -1 -0.969 -0.992 -0.985 -0.968 -0.984 -1 -1 -1 -1 -0.992 -0.986 -1 -0.999 -1 -0.996 0.602
BIC1 0.249 -0.939 -1 -0.973 -0.995 -0.988 -0.971 -0.986 -1 -1 -1 -1 -0.995 -0.989 -1 -1 -1 -1 0.614

2
LLK2 0.984 0.973 1 0.999 1 0.998 0.997 0.997 0.999 0.998 1 0.999 1 0.988 0.997 0.994 0.995 0.999 0.965
AIC2 -0.985 -0.978 -0.997 -0.999 -1 -0.998 -0.999 -0.997 -0.998 -0.998 -0.998 -0.998 -1 -0.990 -0.997 -0.997 -0.996 -1 -0.967
BIC2 -0.987 -0.978 -0.992 -0.999 -1 -0.998 -1 -0.996 -0.995 -0.994 -0.996 -0.995 -1 -0.990 -0.994 -0.993 -0.990 -0.993 -0.971

3
LLK3 1 0.956 0.962 0.981 0.991 0.980 1 0.980 0.981 0.970 0.975 0.984 0.993 0.965 0.956 0.992 0.983 0.922 1
AIC3 -1 -0.955 -0.956 -0.978 -0.989 -0.978 -1 -0.978 -0.978 -0.967 -0.973 -0.981 -0.991 -0.965 -0.953 -0.992 -0.981 -0.915 -1
BIC3 -1 -0.944 -0.947 -0.974 -0.985 -0.975 -0.998 -0.975 -0.972 -0.960 -0.967 -0.976 -0.989 -0.963 -0.946 -0.984 -0.969 -0.897 -1

4
LLK4 0.684 1 0.999 0.986 0.993 0.999 0.977 0.999 1 1 0.999 1 0.994 1 1 1 1 1 0.447
AIC4 -0.683 -0.999 -0.994 -0.983 -0.991 -0.998 -0.977 -0.997 -0.996 -0.997 -0.997 -0.997 -0.992 -1 -0.997 -1 -0.997 -0.994 -0.442
BIC4 -0.681 -0.990 -0.985 -0.979 -0.987 -0.995 -0.975 -0.994 -0.990 -0.990 -0.991 -0.991 -0.990 -0.997 -0.990 -0.992 -0.985 -0.977 -0.435

5
LLK 0.984 0.838 0.703 0.938 0.879 0.943 0.970 0.621 0.807 0.823 0.834 0.815 0.922 0.917 0.789 0.634 0.509 0.580 0.965
AIC -0.985 -0.841 -0.699 -0.938 -0.879 -0.943 -0.971 -0.620 -0.805 -0.822 -0.832 -0.814 -0.921 -0.919 -0.788 -0.634 -0.506 -0.575 -0.967
BIC -0.987 -0.838 -0.693 -0.937 -0.878 -0.943 -0.972 -0.618 -0.802 -0.818 -0.829 -0.810 -0.921 -0.919 -0.784 -0.628 -0.497 -0.563 -0.971

6
LLK 0.984 0.782 0.955 0.975 0.984 0.980 0.969 0.985 0.987 0.944 0.953 0.987 0.979 0.950 0.975 0.946 0.980 0.945 0.964
AIC -0.985 -0.784 -0.952 -0.975 -0.984 -0.980 -0.971 -0.985 -0.986 -0.943 -0.952 -0.986 -0.979 -0.951 -0.974 -0.949 -0.981 -0.945 -0.967
BIC -0.987 -0.780 -0.947 -0.974 -0.984 -0.980 -0.971 -0.985 -0.983 -0.940 -0.949 -0.983 -0.979 -0.951 -0.971 -0.945 -0.975 -0.938 -0.971

7
LLK7 0.984 0.994 0.984 0.995 0.985 0.999 0.991 0.979 0.988 0.997 0.999 0.984 0.991 0.997 0.997 0.958 0.958 0.982 0.965
AIC7 -0.985 -1 -0.981 -0.995 -0.985 -0.999 -0.993 -0.979 -0.987 -0.997 -0.997 -0.982 -0.991 -0.999 -0.997 -0.960 -0.959 -0.982 -0.967
BIC7 -0.987 -1 -0.976 -0.995 -0.985 -0.999 -0.994 -0.978 -0.984 -0.993 -0.995 -0.980 -0.991 -1 -0.994 -0.956 -0.952 -0.975 -0.971

8
LLK -0.105 0.838 0.703 0.938 0.879 0.943 0.970 0.621 0.807 0.823 0.834 0.815 0.922 0.917 0.789 0.634 0.509 0.580 -0.270
AIC 0.107 -0.847 -0.702 -0.940 -0.881 -0.945 -0.973 -0.622 -0.807 -0.824 -0.834 -0.815 -0.923 -0.921 -0.790 -0.636 -0.509 -0.581 0.275
BIC 0.109 -0.854 -0.701 -0.944 -0.883 -0.947 -0.976 -0.622 -0.806 -0.824 -0.833 -0.815 -0.925 -0.924 -0.789 -0.635 -0.507 -0.579 0.283

9
LLK9 0.981 0.987 0.999 1 0.998 1 0.996 1 0.999 0.999 0.999 0.999 0.999 0.991 0.997 0.995 0.997 0.998 0.958
AIC9 -0.982 -0.993 -0.997 -1 -0.998 -1 -0.998 -1 -0.998 -0.998 -0.998 -0.998 -0.999 -0.993 -0.997 -0.998 -0.998 -0.999 -0.960
BIC9 -0.983 -0.992 -0.992 -1 -0.998 -1 -0.998 -1 -0.995 -0.995 -0.995 -0.995 -0.999 -0.993 -0.994 -0.994 -0.99 -0.992 -0.964

presents a worst tting than the Exponential probabil-
ity distribution in both criteria. This occurs due to the
lower number of parameters of the latter distribution.
Figure 4 shows the relative frequency of all probability
distributions for each criterion. Observe that, for the
Generalized Pareto distribution, RLLKj

= 043, RAICj
=

016, and RBICj
= 008, which gives Ravgj = 022. On the

other hand, the Exponential distribution has RLLKj
= 0,

RAICj
= 035, and RBICj

= 046, and thus Ravgj = 027.

Once its average relative frequency was the greatest,
the Exponential probability distribution is chosen to
model the entire RCS datasets for all elevation angles
individually. However, it is important to highlight that
some elevation angles of the incident wave are not
practical. Although the RCS has been simulated for α

varying from -90◦ up to 90◦, typical maritime radars
have 30◦ of beam width vertical aperture, correspond-
ing to α being bounded between -15◦ and 15◦. Table II
shows γ values for all simulated elevation angles.

To perform the analysis of the PDF and CDF of
the exponential probability distribution, it is used the
horizontal plane of the radar antenna corresponding to
an elevation angle αi = 0◦. Consider σpd the RCS values
for the Exponential distribution and σds the simulated
RCS values for the dataset distribution, with σds ∈ σ

for αi = 0◦. The Exponential’s PDF, in function of σpd,

Figure 4: Relative frequency of each probability
distributions for LLK, AIC, and BIC.

is given by the following equation

f(σpd) =


γe−γσpd ,σpd ≥ 0

0 ,σpd < 0
(13)

in which, γ = 00284 for αi = 0◦. Figure 5 shows both
the Exponential’s PDF and the RCS dataset histogram
for αi = 0◦. Note that the RCS values, in the histogram,
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Table II: Exponential’s parameter γ for distinct
elevation angles.

Elevation Angle (α) Exponential’s Parameter (γ)
-90º 1.2473
-85º 0.3144
-80º 0.1511
-75º 0.1210
-70º 0.0527
-65º 0.0457
-60º 0.0423
-55º 0.0292
-50º 0.0246
-45º 0.0206
-40º 0.0177
-35º 0.0121
-30º 0.0116
-25º 0.0162
-20º 0.0155
-15º 0.0235
-10º 0.0160
-5º 0.0236
0º 0.0284
5º 0.0119
10º 0.0112
15º 0.0122
20º 0.0123
25º 0.0125
30º 0.0099
35º 0.0176
40º 0.0175
45º 0.0205
50º 0.0310
55º 0.0405
60º 0.0405
65º 0.0535
70º 0.0835
75º 0.1056
80º 0.1502
85º 0.6645
90º 1.3116

have a higher density for σds ≤ 001 m2. Yet, from
0 m2 to 003 m2, density decreases from 30 to 15, which
corresponds to, approximately, 50% drop. Moreover,
the higher σds, the lower the density, corresponding
to a typical Exponential’s PDF characteristic.

The Exponential’s CDF, also in function of σpd, is
given by the following equation

F (σpd) =


1− e−γσpd ,σpd ≥ 0

0 ,σpd < 0
(14)

in which, γ = 00284 for αi = 0◦. Figure 6 shows the
curves of both Exponential and dataset CDFs, Fds(σds).
Note that, for a probability of 09, σpd = 00655 and
σds = 00652, which yields an error of 100 × σpd −
σdsσds = 100 × 00655 − 0065200652 = 046%

between the RCS values. For a probability of 05, it is
had σds = 00198 m2 and σpd = 00199 m2, resulting
in an error of 05%. Yet, for σpd = σds = 01m2, it
can be seen that the Exponential’s and dataset’s CDFs

Figure 5: Histogram of simulated RCS values and PDF
of the tted Exponential distribution, when αi = 0◦.

yields 097 and 099 of probability, respectively, which
corresponds to 2% of difference.

Figure 6: CDFs of the simulated RCS values and the
tted Exponential distribution, when αi = 0◦.

To evaluate the impact of RCS modeling on (12),
Figure 7 shows Rmax as a function of SNR. These curves
assume RCS values that satisfy F (σpd) = Fds(σds) =

01, 03,    , 09. Observe that, for σpd and σds that sat-
ises F (σpd) = Fds(σds) = 01, 05, and 09 the curves
are well-tted, presenting error less than 015%. The
curve with the greatest error, about 38%, occurs for
RCS values respecting F (σpd) = Fds(σds) = 03. Note
that increasing both F (σpd) and Fds(σds) corresponds
to an increment in the SNR for the same Rmax.
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Figure 7: Rmax as a function of SNR for some
simulated RCS values.

V. Conclusions and Future Work

This paper discussed the statistical analysis and mod-
eling of the DJI Phantom IV RCS for distinct eleva-
tion angles. For this, three different criteria to select
the probability distribution which best tted the RCS
datasets were used. Simulations of RCS, analysis of
the criteria LLK, AIC, BIC for various probability dis-
tributions, and calculation of radar range considering
RCS as a random variable were carried out for this
type of drone. Based on numerical results, the RCS
dataset has been modeled as an Exponential probabil-
ity distribution because it achieved the best averaged
score in the used criteria. Considering the parameters
of a maritime radar, it was shown that a maximum
error of 38% in the radar range equation occurred.
Further studies will be carried out to model the RCS
as a random process for distinct frequencies, as well
as for other types of drones.
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