Sustentabilidade nas Instalações Elétricas Estudo de Caso: Iluminação Pública a LED

Capitão-Tenente (EN) Daniel Gustavo Pontes Silva

Ajudante da Seção de Instalações Elétricas da DOCM. Graduado em Engenharia Elétrica pela Universidade Federal Fluminense.

Primeiro-Tenente (RM2-EN) Rafael de Andrade Magalhães Ajudante da Seção de Instalações Elétricas da DOCM. Graduado em Engenharia Elétrica pela Universidade Católica de

O desenvolvimento sustentável tem como base o uso racional dos recursos naturais que, por sua vez, são classificados como renováveis e não renováveis. A diferença se concentra na facilidade de sua reposição pela natureza. Quando o consumo suplanta a capacidade natural de reposição desses bens, os recursos são classificados como não renováveis. A preservação dos recursos naturais se dá pela sua utilização de forma racional (sem desperdício), para que os renováveis não se extingam por mau uso e dêem continuidade ao ciclo ambiental. Introduz-se assim o conceito de sustentabilidade, onde a sociedade, seus membros e suas economias, possam preencher suas necessidades e expressar o seu maior potencial no presente e, ao mesmo tempo, preservar a biodiversidade e os ecossistemas naturais, planejando e agindo de forma a atingir a manutenção indefinida desses ideais (1).

Nesse contexto estão incluídos todos os ramos da engenharia, especialmente a engenharia elétrica, nas áreas de geração, transmissão e distribuição de energia. Do total de energia consumida no país, 20% é de uso exclusivo em iluminação pública - IP. No âmbito da MB, diversas OM terrestres, como Distritos Navais, Complexos, Bases, Centros de Instrução e de Adestramento, entre outras, possuem IP em suas instalações, devido às dimensões dos terrenos que ocupam. Esta iluminação possibilita a continuidade das atividades básicas, relacionadas à Segurança

(1) Wikipédia, A enciclopédia livre. Sustentabilidade. Disponível em: http://pt.wikipedia.org/wiki/Sustentabilidade Orgânica (inspeções noturnas, visualização de áreas através de Circuito Fechado de TV -CFTV), como também às atividades funcionais, que necessitem de deslocamento noturno pelo pessoal de bordo entre as edificações existentes de uma OM, como Salas de Estado, Ranchos e Paióis diversos, além da realização de exercícios de adestramento noturnos.

Novos avanços tecnológicos nessa área foram observados nas últimas décadas em busca de sistemas de IP mais eficientes. A tecnologia com o uso de luminárias a LED (diodo emissor de luz) desponta como uma nova revolução no uso sustentável de energia para iluminar vias e áreas comuns. As luminárias a LED para IP já são realidade em países como China, EUA, Itália e Holanda.

Os HB-LED (do inglês "High Brightness Light Emission Diode") possuem as seguintes vantagens que os qualifica para uso em iluminação de forma sustentável (2):

- 1) Alta eficiência energética com baixo consumo de energia dados pela relação entre o fluxo luminoso (Im - quantidade de energia produzida por uma fonte luminosa) e a potência ativa (W) da fonte luminosa (lm/W), reduzindo as perdas energéticas pela dissipação de calor;
- 2) Vida útil média de 50.000 horas, aproximadamente três vezes maior do que as
- (2) Novicki, Jackson M. & Martinez, Rodrigo LED para iluminação pública

convencionais (vapor de sódio, metálico ou de mercúrio), com custos de manutenção e reposição reduzidos;

- 3) Segurança 1 por operarem em baixa tensão (BT), diminuem os riscos de acidentes e fatalidades, proporcionando segurança em sua instalação, utilização e especialmente na manutenção das instalações terrestres da MB, com grupos EL capacitados para trabalharem em BT;
- 4) Segurança 2 dois atributos da cor são atribuídos a sistemas de iluminação. O primeiro refere-se à tonalidade apresentada no ambiente que define a aparência de cor emitida pela fonte da luz, chamado temperatura de cor (Tc) da lâmpada. O segundo está associado à capacidade que afeta a aparência da cor de objetos e das pessoas iluminadas pela lâmpada, chamado Índice de Reprodução de Cores (IRC). A partir de baixas Tc (até 3000K), criam-se ambientes relaxantes, tipicamente residenciais, com tonalidade amarelada, com baixo IRC. No caso de altas Tc (acima de 4000K), estimula-se a produtividade e a identificação de objetos, com alto IRC. Os sistemas LED trabalham ente 4000 e 5000K, dependendo do fabricante, provendo um sistema de iluminação com excelente definição de cores e identificação dos objetos na visão noturna, incrementando a segurança das vias públicas e também de áreas externas de complexos militares sensíveis;
- 5) Emissões de radiações ultravioleta (UV) e de infravermelho (IR) – o espectro do comprimento de ondas das lâmpadas LED encontra-se no intervalo entre o UV e o IR, trazendo benefícios como:
- a. Como não trabalham na faixa UV, não há atração de insetos à luminária, comumente responsáveis pela transmissão de doenças como leishmaniose e doença de Chagas, provocando o contágio dos militares, problema recorrente em

unidades militares de fronteira; e

- b. Da mesma forma por não operar na faixa de IR, não há contribuição de radiação para o efeito estufa;
- 6) Poluição luminosa a iluminação a LED é direcionável, reduzindo o desperdício de luz artificial no período da noite;

Porém, há pontos desfavoráveis aue dificultam a entrada definitiva desta tecnologia em países tropicais (3):

- 1) Temperatura por se tratar de uma tecnologia utilizada em países europeus e nos EUA, com climas temperados, sua performance varia muito com o tempo de uso, devendo o produto ser tropicalizado para que se mantenham suas características originais;
- 2) Custo no caso de substituição apenas das luminárias com o aproveitamento de toda a infraestrutura de postes e cabeamento existentes, os custos do conjunto luminária/lâmpada LED ainda são elevados (ordem de três vezes o valor de uma luminária convencional), tendendo à redução com o avanço da tecnologia e com o aproveitamento inclusive das estruturas das luminárias existentes somente necessitando a substituição da lâmpada;
- 3) Distúrbios elétricos o fornecimento de energia em sistemas isolados (instalações em fronteira) muitas vezes é precário, ocorrendo diversos distúrbios elétricos que danificam ou queimam uma luminária LED, devendo ser incrementados os seus respectivos sistemas de proteção.

Ao substituir um sistema convencional de IP a lâmpadas a vapor de sódio a alta pressão

(3) Novicki, Jackson M. & Martinez, Rodrigo – LED para iluminação pública

(LVSAP) ou a lâmpadas a vapor de mercúrio por um sistema a LED, retira-se do ambiente, no descarte de cada lâmpada, em média de 0,015g a 0,030g e de 0,013g a 0,080g de mercúrio, respectivamente. Considerando-se que a vida útil de uma lâmpada a LED, ensaiada em laboratório, é três vezes maior em comparação a lâmpadas convencionais, e que o sistema de IP total do país possui da ordem de treze milhões de lâmpadas⁽⁴⁾, teríamos da ordem de 650 toneladas de mercúrio retiradas dos lixões e aterros sanitários. Some-se a este fato a energia que não será gerada para o consumo em sistemas de convencionais, evitando a produção de CO₂ para a atmosfera (aproximadamente 25kg de CO₂ por MWh gerado⁽⁴⁾), seja por origem térmica (utilizando recursos não renováveis) ou hidrelétrica (com recursos renováveis).

No Brasil, registra-se a utilização desta tecnologia de forma experimental na Ponte Rosinha Fillipo, em Guaratinguetá - SP, sistema que utiliza 24 luminárias a LED de 200W. O projeto foi concebido e desenvolvido a partir de um convênio entre o Laboratório de Eficiência Energética - LESIP da UNESP com a Prefeitura da cidade de Guaratinguetá.

Foto 1 - Ponte Rosinha Fillipo, em Guaratinguetá, SP (Fonte: FEG-UNESP)

Os projetos abaixo relacionados exemplificam a utilização da tecnologia LED em parte do ambiente, comparativamente com a iluminação convencional:

Foto 2 - Ponte St. Anthony Falls, em Minneapolis - EUA (Fonte: Beta LED)

⁽⁴⁾ Astorga, Oscar A. M. – Implantação e análise de desempenho da primeira experiência brasileira em IP utilizando tecnologia LED – Encontro Nacional de Instalações Elétricas (ENIE 2010).

As novas tecnologias ofertadas ao mercado consumidor e os novos conceitos desenvolvidos pela sociedade deverão objetivar o desenvolvimento sustentável do país. Este é um dos objetivos da Comissão Interna de Conservação de Energia da Marinha (CICEMAR). Criada em 1991, que é responsável pela promoção, articulação e desenvolvimento de ações visando à racionalização e maior eficiência no uso de insumos energéticos no âmbito da MB. Atendendo as premissas elaboradas pela CICEMAR,

Foto 3 - Cidade de Anchorage, Alaska – EUA (Fonte: Beta LED)

da qual a DOCM é integrante, a utilização da tecnologia LED é uma opção a ser adotada pelas OM futuramente, uma vez que esta tecnologia, em pouco tempo, se tornará economicamente

Foto 4 – Túnel Crocina, na Cidade de Arezzo – Itália (Fonte: Beta LED)

viável não somente para IP, mas também para a iluminação de compartimentos internos, como escritórios, gabinetes e alojamentos, que poderão substituir suas lâmpadas fluorescentes tubulares compactas por unidades LED consumindo três vezes menos energia.

Conclusão

Criando soluções inovadoras para os problemas cotidianos, podemos utilizar energia de forma eficiente, com redução de investimentos e impactos ambientais, em conformidade com os atuais conceitos de sustentabilidade.